2020-11-03

碳基电子学研究中心张志勇-彭练矛课题组在碳基逻辑集成电路领域取得重要进展

作为数字集成电路的主流逻辑形式,互补金属氧化物半导体(CMOS)逻辑架构为硅集成电路技术的发展和繁荣做出了重要贡献。CMOS逻辑门包含一个由空穴型场效应晶体管(p-FET)组成的上拉网络和一个由电子型晶体管(n-FET)组成的互补下拉网络。与其他类型的逻辑类型相比,CMOS电路具有高噪声容限和低功耗优势,因而被广泛的应用于数字集成电路中。近来,研究人员试图采用具有更高迁移率的半导体来构建新型晶体管,从而推进未来集成电路的发展。然而,比硅更高的载流子迁移率的半导体材料(例如砷化铟、锗、碳纳米管等)通常具有更小的带隙,其场效应晶体管会遭受严重的栅致漏极漏电流效应,致使CMOS逻辑门容易出现漏电流高、电压损耗大等现象,严重阻碍了这些半导体在超大规模集成电路中的应用。因此,有必要针对性的开发出一种新的逻辑形式,以推动高性能、高噪声容限和低功耗的窄带隙半导体集成电路发展。

针对以上问题,j9九游会官网登录入口信息科学技术学院电子学系碳基电子学研究中心、纳米器件物理与化学教育部重点实验室的张志勇-彭练矛联合课题组提出了一种新集成电路方案,即采用强反馈互补金属氧化物半导体(Strengthened CMOS, SCMOS)逻辑形式和相应的改进晶体管,在不增加电源数目的情况下,能够有效抑制窄带隙半导体集成电路中的漏电流和逻辑损耗。课题组以碳纳米管器件作为例子,演示了具有低功耗和严格轨对轨输出的SCMOS电路。所有的碳纳米管晶体管都被设计成双栅结构:主栅G1和控制栅G2,在集成电路中将所有上拉晶体管(p-FET)的G2连接到地,将所有下拉晶体管(n-FET)的G2连接到电源,如此连接的G2钳制了器件关态时的靠近漏端的沟道电势,有效抑制了GIDL效应,并且极大降低了开态时的串联电阻。因此,SCMOS架构不仅降低了窄带隙而导致的电流泄漏,而且保持了高迁移率半导体晶体管的高性能。课题组还基于SCMOS架构实现了一些典型的数字逻辑门,包括反相器、与非门、或非门、多级门反相器串和环形振荡器,测试结果表明,与CMOS逻辑门相比,SCMOS逻辑门具有严格的轨对轨输出,静态功耗降低了三个数量级,并且与CMOS集成电路具有类似甚至更高的工作速度。更为重要的是,SCMOS逻辑架构可以推广到任何窄带隙半导体的集成电路中,以同时提供高性能和低功耗。

2020年10月30日,相关研究成果以“基于窄带隙半导体的高性能、低功耗电路应用的强反馈互补金属氧化物半导体逻辑(Strengthened Complementary Metal-Oxide-Semiconductor Logic for Small Band-Gap Semiconductor Based High-Performance and Low-Power Application)”为题,在线发表于材料领域著名期刊《美国化学学会.纳米》(ACS Nano);j9九游会官网登录入口电子学系博士研究生赵晨怡、仲东来为共同第一作者,张志勇、彭练矛为共同通讯作者。相关课题得到国家重点研发计划、北京市科技计划等资助。

论文链接:https://pubs.acs.org/doi/10.1021/acsnano.0c05554


返回